Time intervals measured by a clock give the following readings :
$1.25 \;s , 1.24\; s , 1.27\; s , 1.21 \;s$ and $1.28\; s$
What is the percentage relative error of the observations?
$1.6$
$2$
$4$
$16$
Explain uncertainty or error in given measurement by suitable example.
The density of a cube is measured by measuring its mass and the length of its sides. If the maximum error in the measurement of mass and length are $3\%$ and $2\%$ respectively, then find the maximum error in the measurement of the density of cube.......... $\%$
A body travels uniformly a distance of $(13.8 \pm 0.2) m$ in a time $(4.0 \pm 0.3) s$. Its velocity with error limits and percentage error is
The energy of a system as a function of time $t$ is given as $E(t)=A^2 \exp (-\alpha t)$, where $\alpha=0.2 s ^{-1}$. The measurement of $A$ has an error of $1.25 \%$. If the error in the measurement of time is $1.50 \%$, the percentage error in the value of $E(t)$ at $t=5 s$ is
A physical quantity $A$ is related to four observable $a,b,c$ and $d$ as follows, $A = \frac{{{a^2}{b^3}}}{{c\sqrt d }}$, the percentage errors of measurement in $a,b,c$ and $d$ are $1\%,3\%,2\% $ and $2\% $ respectively. What is the percentage error in the quantity $A$ ......... $\%$